Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Integral field spectroscopy (IFS) is a powerful tool for understanding the formation of galaxies across cosmic history. We present the observing strategy and first results of MSA-3D, a novel JWST program using multi-object spectroscopy in a slit-stepping strategy to produce IFS data cubes. The program observed 43 normal star-forming galaxies at redshifts 0.5 ≲z≲ 1.5, corresponding to the epoch when spiral thin-disk galaxies of the modern Hubble sequence are thought to emerge, obtaining kiloparsec-scale maps of rest-frame optical nebular emission lines with spectral resolutionR≃ 2700. Here we describe the multiplexed slit-stepping method, which is >15 times more efficient than the NIRSpec IFS mode for our program. As an example of the data quality, we present a case study of an individual galaxy atz= 1.104 (stellar massM*= 1010.3M⊙, star formation rate, SFR = 3M⊙yr−1) with prominent face-on spiral structure. We show that the galaxy exhibits a rotationally supported disk with moderate velocity dispersion ( km s−1), a negative radial metallicity gradient (−0.020 ± 0.002 dex kpc−1), a dust attenuation gradient, and an exponentially decreasing SFR density profile that closely matches the stellar continuum. These properties are characteristic of local spirals, indicating that mature galaxies are in place atz∼ 1. We also describe the customized data reduction and original cube-building software pipelines that we have developed to exploit the powerful slit-stepping technique. Our results demonstrate the ability of JWST slit-stepping to study galaxy populations at intermediate to high redshifts, with data quality similar to current surveys of thez∼ 0.1 Universe.more » « lessFree, publicly-accessible full text available April 15, 2026
- 
            Abstract The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲ z ≲ 1.7 from theMSA-3Dsurvey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution ofR ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc−1. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient atz ∼ 1 with small intrinsic scatter of 0.02 dex kpc−1. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.more » « lessFree, publicly-accessible full text available January 9, 2026
- 
            Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M⊙, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.more » « less
- 
            Abstract We present 150 MHz, 1.4 GHz, and 3 GHz radio imaging (LoTSS, FIRST, and VLASS) and spatially resolved ionized gas characteristics (SDSS IV-MaNGA) for 140 local ( z < 0.1) early-type red geyser galaxies. These galaxies have a low star formation activity (with a star formation rate, SFR, ∼ 0.01 M ⊙ yr −1 ), but show unique extended patterns in spatially resolved emission-line maps that have been interpreted as large-scale ionized winds driven by active galactic nuclei (AGN). In this work, we confirm that red geysers host low-luminosity radio sources ( L 1.4GHz ∼ 10 22 WHz −1 ). Out of 42 radio-detected red geysers, 32 are spatially resolved in LoTSS and FIRST, with radio sizes varying between ∼5–25 kpc. Three sources have radio sizes exceeding 40 kpc. A majority display a compact radio morphology and are consistent with either low-power compact radio sources (FR0 galaxies) or radio-quiet quasars. They may be powered by small-scale AGN-driven jets that remain unresolved at the current 5″ resolution of radio data. The extended radio sources, not belonging to the “compact” morphological class, exhibit steeper spectra with a median spectral index of −0.67, indicating the dominance of lobed components. The red geysers hosting extended radio sources also have the lowest specific SFRs, suggesting they either have a greater impact on the surrounding interstellar medium or are found in more massive halos on average. The degree of alignment of the ionized wind cone and the extended radio features are either 0° or 90°, indicating possible interaction between the interstellar medium and the central radio AGN.more » « less
- 
            Abstract Lyαline profiles are a powerful probe of interstellar medium (ISM) structure, outflow speed, and Lyman-continuum escape fraction. In this paper, we present the Lyαline profiles of the Cosmic Origins Spectrograph (COS) Legacy Archive Spectroscopic SurveY, a sample rich in spectroscopic analogs of reionization-era galaxies. A large fraction of the spectra show a complex profile, consisting of a double-peaked Lyαemission profile in the bottom of a damped, Lyαabsorption trough. Such profiles reveal an inhomogeneous ISM. We successfully fit the damped Lyαabsorption and the Lyαemission profiles separately, but with complementary covering factors, a surprising result because this approach requires no Lyαexchange between high-NHiand low-NHipaths. The combined distribution of column densities is qualitatively similar to the bimodal distributions observed in numerical simulations. We find an inverse relation between Lyαpeak separation and the [Oiii]/[Oii] flux ratio, confirming that the covering fraction of Lyman-continuum-thin sightlines increases as the Lyαpeak separation decreases. We combine measurements of Lyαpeak separation and Lyαred peak asymmetry in a diagnostic diagram, which identifies six Lyman-continuum leakers in the COS Legacy Archive Spectrocopy SurveY (CLASSY) sample. We find a strong correlation between the Lyαtrough velocity and the outflow velocity measured from interstellar absorption lines. We argue that greater vignetting of the blueshifted Lyαpeak, relative to the redshifted peak, is the source of the well-known discrepancy between shell-model parameters and directly measured outflow properties. The CLASSY sample illustrates how scattering of Lyαphotons outside the spectroscopic aperture reshapes Lyαprofiles because the distances to these compact starbursts span a large range.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
